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Numerical Navier—Stokes Solutions from Gas Kinetic Theory
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In order to test the gas-kinetic based hydrodynamic scheme given in
paper | (K. H. Prendergast and K. Xu, /. Comput. Phys. 109, 63, 1993)
as a Navier-Stokes solver, we extend the scheme to two dimensions
and exhibit some Navier-Stokes solutions. The scheme is 2 high-
resolution gas kinetic scheme in both space and time. The advective
and diffusive fluxes are coupled and solved at the same time by
following the time-dependent velocity distribution function for par-
ticies. Numerical results for some well-defined Euler and Navier-Stokes
test cases are presented. The Kolmogorov and the laminar boundary
tayer problerns exhibit the dominance of the real viscosity effects. The
strong shock interaction test cases show the applicability of the scheme
to supersonic gas flow. © 1994 Academic Press, Inc.

L INTRODUCTION

Solving the full system of Navier-Stokes equations is the
ultimate goal of a numerical flow simulation. The past 20
years have seen a considerable development of numerical
techniques for solving the lower-order system of hyperbolic
conservation laws. One group of high resolution methods
solve the Euler equations by adopting second-order exten-
sions of Godunov’s first-order scheme and incorporating
nonlinear wave propagation, such as the schemes given in
Roe [25], Colella [11], van Leer [30], and Harten [ 14].
The other group uses traditional central difference methods,
as did by MacCormack {197 and Jameson et al. [16]. The
numerical sotution of the Navier-Stokes equations in both
cases is achieved mainly by treating the advection and diffu-
sion terms sequentially, using central differences for the
diffusion terms (Shu er o/, {297, Koren [ 1773, Martinelli and
Jameson [20]).

Another type of gas-dynamical simulation stems from
consideration of the underlying physics at the molecular
level. The N-body microscopic molecular dynamics and the
Monte Carlo method (Bird [4]) track a large number of
particles individually to determine thermodynamic and
transport properties. Because the number of particles that
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can be employed in the microscopic simulations of
hydrodynamic flows is limited, this imposes some con-
straints on the accuracy of the description of the flow (Boon
{51} In the theory of gases, the microscopic nature of real
systems is usually considered in the framework of the
Boltzmann equation. A great deal of literature has been
devoted to the question of the relation between the
microscopic and macroscopic descriptions of fluids. Owing
to the difficulty of the problem, several approximations
have been used, such as limiting the phase space by taking
a discrete set of possibie velocities, as in the Broadwell
model [6]. In the last several years, lattice gas Boltzmann
equation (LGB) methods have been developed which
provide an alternative to molecular dynamics for
microscopic simulation of macroscopic fluid dynamical
phenomena; in these methods the continuvous trajectories of
particles in the real phase space are approximated by
allowing particles to move along the links of a regular lattice
with discrete time steps; “collisions” occur at the nodes of
the lattice in such a way as to conserve mass, momentum
and energy (Frisch etal. [13], Doolen [12], and Qian
{241]). Direct simulations of hydrodynamics by solving the
approximate Boltzmann equation for time-dependent par-
ticle distribution functions were first introduced in the 1960s
by Chu [9] and Prendergast [277]. Pullin [237, Perthame
(217, and many others have also worked on the Boltzmann
equatton to develop so-called “Boltzmann-type schemes”
(Harten, Lax, and van Leer [ 15]). In all these “Boltzmann-
type schemes,” due to an over-simplified numerical
approximation, the final numerical dissipation wusually
depends on the grid size and is large enough to mask the real
physical viscosity and conductivity effects.

In order to get the Euler and Navier-Stokes solutions
accurately from the gas-kinetic theory, in the first paper
by Prendergast and Xu [22] (referred to as paper I here-
after), we developed a new numerical approach to the
Bhatnagar-Gross-Krook model [3] (BGK hereafter) of
the Boltzmann equation. This scheme differs from any other
“Boltzmann-type schemes,” in that the integral solution of
the BGK model and the collisional conservation constraints
are used at the same time. In this paper we extend the one-
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10 XU AND PRENDERGAST

dimensional scheme of paper 1 to two dimensions and give
an analysis of the numerical Navier-Stokes solutions.

This paper is arranged as follows. In Section 11 we give a
detailed description of this finite volume scheme in two
dimensions, which uses both the x and y variations of the
quantities in the evaluation of numerical fluxes across each
cell wall. This property distinguishes it from directional
splitting schemes. In Section III, we apply this scheme
to some well-studied test cases. The iast section is the
conclusion.

II. A HYDROCODE IN TWO DIMENSIONS

In paper I, we gave some kinetic theory preliminaries and
the numerical scheme in one dimension; here we start from
the BGK model in two dimensions (no body force). For
the three-dimensional scheme, similar techniques can be
applied.

The BGK model in two dimensions case is

Sorufotof =

(g—f), 1)
T

where fis the true gas distribution in space (x, y) and time
t, (u, v) are the velocities for a single particle in the (£, )
directions, respectively, and g is the equilibrinm state
approached by fthrough collisions. The BGK mode] can be
interpreted as a phenomenological description of the
tendency of £ under collisions to approach the equilibrium
state g on a time scale 7. The relaxation time 7 can be a very
complicated functional of the distribution f, but for most
cases, aside from discontinuity regions, it is reasonable to
regard it as a function of the local density and temperature.
Owing to the conservation laws of mass, momentum, and
energy during particle coilisions, the distribution functions
of g and f'in the BGK model have to satisfy the conservation
constraints:

1

(f—8)

j " V780, ¥x o (22)
v T

L2 4+ 02+ &)

where d= = £X71 dE du dv corresponds to the differential of
the translation velocity and all internal degrees of freedom
of the molecules. The connection between the number of
internal degrees of freedom K, space dimension D of the
simulation and the ratio of specific heats y of the gas is K=
— D+ 2/(y —1). Equation (2.2) determines g completely in
terms of f.

On the other hand, in the hydrodynamic limit, the macro-
scopic description of the gas is specified by the local mass

p(x, y, 1), momentum P(x, y, 1), and energy e(x, y, {) den-
sities, which are moments of the true distribution function
f'(xs ¥, tou, v, é), deﬁned by

P I

Pl u -

r =] : fdz (23)
3 M + 0P + &%)

The real gas distribution function f has no universal form
and can depend on many factors; therefore the local mass p,
momentum P, and energy ¢ densities cannot uniquely deter-
mine f. :

The equilibrium state g should be a stationary state
of particle collisions, and the form of g can be derived
{Cercignani [8]), namely the Maxwellian

o Al— LYoo= VP + &Y
3

gx, y, Lu v, )=4 (2.4
where the variables A, U, V, and 4 are functions of (x, y, ).
Given the mass, momentum, and energy densities, there isa
uniquely determined equilibrium state g, which can be
found by putting g instead of fin the integrals in Eq. (2.3):

P Agtk+i2; —(K+2)2

P, pU

P, = oV (2.5a)
1 5 , K+2

£ EP<U + V- + 7 )

(We have assumed here that 1 does not depend on the
variables in d=.) For convenience of numerical calculations,
we use p, A, U, V instead of 4,4, U, V to describe the
Maxwellian distribution. By solving Eg.(2.5a), all
parameters in the Maxwellian g can be obtained from the
relations

p P
U P.lp

= > . (2.5b
14 P,ip (2:5b)
yl

(K+2)p/(de—3p(U* + V)

In the following, we give a detailed numerical scheme for
calculating the real gas distribution function f at a certain
point in two-dimensional space (x, ¥), then we compute
numerical fluxes from f at this point. Consider one point
(x=0, y=0) in two-dimensional space as shown in Fig. 1
and assume that at this point, at the beginning of each time
step ¢ =0, the local equilibrium Maxwellian distribution
function is

g(x=0, y=0,t=0)= Adg~ W= VP+@-¥1+8 () 6)
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FIG. 1. The two-dimensional domain with the Taylor expaasion

center at the point (0, 0). The numbers 1 to 8 refer to the cells,

The Taylor expansion of the Maxwellian distribution in the
neighborhood of this point (to the first order in space and
time) can be written as

2(x, y, 1) = g(0,0, 0)(1 + ax + by + At), 2.7)

where the coefficients @, &, and A have the following
dependences on «, v, and ¢&:
a=a, +ayu+a;v+ a(u’ + 0>+ £2),
b=b,+byu+byv+b(u?+v?+ &),
A=A+ Au+ A,v+ 4,02 + 02 + &)

(2.8)

All coefficients a,, a,, .., A; can be regarded as locally
constant, and the u, v, £ dependences arise from the Taylor
expansion of the Maxwellian distribution.

Similarly, local initial mass, momentum, and energy
densities around the point {(x=0, y=0) at t=0 can be
expanded in the forms

plx, ¥, 0)=p(0,0,0)(1 + p,x+p, y)
Px(x7 Vs O)=Px(07 0! 0)(1 +Px1x+P,r2y)
P,(x, ,0)=P,(0,0,0)(1 + P, x+ P,y y)

and

e(x, y, 0)=¢(0, 0, 0)(1 + 2, x + &, ), (2.9)
where p(0, 0, 0), p, -- - &, are also locally defined constants.
The interpolation of all macroscopic quantities can be
obtained using the so-called TVD or ENO techniques; the
difference here is that the interpolated quantities might be
across the cell boundary instead of some continuous
function inside each celi.

From the mass, momentum, and energy density inter-
polations at time +=0, we can uniquely construct the
corresponding equilibrinm state g(0, 0, 0), and the 2 and b
terms in Eq. (2.7) by following the relation between macro-
scopic quantities and the moments of g(x, y, 0). Therefore,

the Maxwellian distribution g{0, 0, 0) can be found by using
Eq. (2.5b), where p, P,, P,, and ¢ are replaced by the inter-
polated quantities p(0,0,0), P.(0,0,0), P,(0,0,0), and
e(0,0,0) in Egq (2.9). After obtaining g{(0,0,0), the
x-dependent & term in Eq. (2.8) can be found as

/P ay
P.jp ay
=(&) ; (2.10a)
Py.l/P a3
2e/p a4
with
1 v V 2,
U U*+1/24 uv B,
= , (2.10b
() V uv Vig 124 B ( )
& %, #, B,
where

B =U?+V*+(K+2)24

B, =U>+ VU (K+4)Uf24,

By =V>+ UV +{K+4) V24,

Bye= (U + VP +(K+4WU?+ VYA
+(K2+5K+8)/442

Fortunately, the above matrx can be inverted easily, and
the solutions for a, ---a, can be wriiten in closed form as
functions of p,/p, .., 2&;/p. For the b ferm, we can solve the
similar equations using p,/p, .., 2¢,/p on the left-hand side
of Eq. (2.10a) and replacing a with b on the right-hand side.
At this point, all the unknowns in the linear approximation
to the Maxwellian distribution g(x, v, @) at ¢ = 0 have been
obtained from interpolation of the given initial macroscopic
quantities.

The next important question is what the real distribution
function f(x, y, 0) is in the neighborhood of the same point
{x=0, y=0) at t =0. In a smooth region we can safely put
f(x, y,0)=g(x, »,0) under the physical assumption of
local thermodynamic equilibrium (LTE). However, if there
is a discontinuity near (x=0, y=0), f can be a drastically
varying function corresponding to different densities, tem-
peratures, and mean velocities, and the assumption f =g
fails. For numerical purposes, in most cases, the scale size of
the numerical grid is much larger than the thickness of the
physical discontinuity, and the safest way to proceed here is
to interpolate f on both sides of the cell boundary
separately. At a shock front, this assumption is consistent
with the physical principle that the downstream information
cannot propagate upstream past the shock. As shown in the
Fig. ! for the calculation of fluxes in the #-direction, we can
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interpolate all quantities separately in the region x < 0 and
x>0, and the resulting distribution function f, is taken to
be

g'0, 0, 0)(1 + a'x + b'y),
g90,0,0)l+ax+by),

x <0,

11
x>0, ()

Folx, 3. O} ={

where g’ and g are both Maxwellians, and a', #', a’, and b’
have velocity dependences similar to the g and # terms in
Eq.(2.8). In the same way, the mass, momentum, and
energy densities can be interpolated as

p'(x, y,0)=p"(0,0,0)(1 + pix + p5 )
Pl{x, y,0)=P(0,0,0)(1 + P, x+ P, y)

Pi(x, y,0)=P(0,0,0)(1 + P}, x + Pi, y)

and

g'(x, ¥,0)=¢'(0,0, 0)(1 + &} x + &} y), (2.12)

for x<0, with similar expansions for p"(x, y,0}--.
e"(x, y,0) for x> 0. In a smooth region the interpolations
from the left and right sides are automatically close to each
other; near a discontinuity they can have very different
values. All parameters in f;(x, ¥} can be found in the same
way as the quantities appearing in g(x, y, 0} in Eq. (2.7) at
time t=0.

In paper I we have given an interpolation rule for all con-
served quantities in the one-dimensional case. The simplest
way to proceed in two dimensions is to use the same inter-
polation rule to obtain all the x-dependent variables; for
example, from the cells (1, 2, 3, 4) in Fig. 1 to interpolate
2(0,0,0), P.0,0,0),..,¢ in Eq.(29), as well as the
x-dependent terms in Eq. (2.12). There, the main idea of the
interpolation is that, by considering four celis (1, 2, 3, 4)
centered at x =0, we expand the density (and the momen-
tum and energy) in the form p=p,+p, x4 px7+ p3x°,
and then we equate the integrated values of these expres-
sions in four different cells to the given average values in
these cells, from which the four unknowns p,, ..., g1 can be
obtained. After this, we keep just to the linear terms, and
drop the x* and x* terms. If the value of p, is out of the
range of p(2) and p(3) of the average values in cell (2) and
(3), then two cells are used to interpolate p, and p,. For
Eq. (2.12), we use the three cells (1, 2, 3) for the left side
interpolation and (2, 3, 4) for the right side (x =0 lies on the
boundary between cells 2 and 3). Besides this, in this two-
dimensional scheme, we need to include the y-dependence
as well. The interpolations for the y-dependent variables in

Eq. (2.9) and Eq. (2.12} are obtained by using central dif-
ferences. For example (as shown in Fig. 1),

({p(7)+ p(8)) ~{p(5) + p(6)})}
4(0, 0, 0) ’

I =((P(7)—P(5))
P2=950,0,0)

, _{p(8)—pl6))

P2 = 55(0,0,0)

2-——

(2.13)

As recommended by A. Harten and C. Shu, we have tried
to use high-order ENQ interpolation to obtain these expan-
sion coefficients, but since we keep only linear terms in the
current scheme, ENO interpolation does not seem to
improve the simulation results appreciably.

Remark. Up to this point, at the beginning of each time
step, from the given local mass, momentum, and energy,
we have found two distribution functions: one is the
equilibrium state g(x, y, 0) in the neighborhood of a cell
boundary, and the other is the “real” gas distribution func-
tion fo(x, ) expanded on both sides of the cell boundary.

All expansion coefficients given above refer to ¢ =0, and
the A term of the time-derivative of g in Eq. (2.7) is still
unknown. In the following, we use the general solution of
the BGK model to determine 4 implicitly from the conser-
vation constraints (cf. Eq.(2.2)). The general integral
solution of the BGK model in two dimensions with the
above expansions of g and f; (for local constant 7) can be
written as

1t - .
flx, y, t)=—t-J- £(0,0,0)(1 +ax' + by + At'ye 1V dr
0

+e M f(x —ut, y—ot), (2.14a)

where

x'=x—u(t—1t), y=y—v(t—1), (2.14b)

are the characteristics of the BGK equation (ic., the free
particle trajectory) for each particle and f, is the initial value
of the true distribution function at r=0,

Using Eq. (2.7), we find, after performing the integration,
that

flx, », )= g(0,0,0)((1 —e~ ")
x (1 + ax — tua + by — tob —tA)
+ te™"(ua + vh) + t4)

+e " folx —ut, y—vt). (2.15)
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Because we need the fluxes across the boundary at x =Q0and
from —1 to 4 in the f-direction, we find that the linear
y-dependent term in the above equation disappears when
we integrate over dy to obtain fluxes. So, we will need fonly
at x=0, y=0. With these simplifications the above
equations yiclds

f{os 0! l) = g(os 0: 0)({1 —e_”‘t)
x (1 — tua — tob —1A) + te " "*(ua + vh) + tA)
+ e ol —ut, ~vt), (2.16a)

where the initial function f, is given by

' { I
_ _ {810,0,0)(1 —a'ut - b'ot), u>0
ol —us, Ut)_{g’[o,0,0)[1-a’ut—b’ut), u<0.
(2.16b)

The unknown parameter A in the above distribution func-
tion f(0, 0, ¢) can be obtained by using the time average of
the conservation constraints at (x=0, y=0) over the
duration of the time step 7

1
(£(0,0,£)— (0,0, 1)) d= dt = 0.

I

1w+ 0>+ &%)
(2.17)

From the above equations, we can obtain equations similar
to Eq. (2.10a) for 4 by replacing a,, ..., a, by the unknown
parameters A, .., A,, using the same matrix & on the
right-hand side. The left-hand side will depend explicitly on
moments of g(0, 0, 0), the quantities a, b, and f( —ut, —v?).
At this point, all parameters in the expression of f{0, 0, ¢)
are known (see [33] for more detailed formulas), and we
can easily evaluate the final mass, momentum, and energy
fluxes across the boundary for the whole time step 7. These
are

F, 1

F T

iy =H " “ (0,0, ) dEdr. (2.18)
Py 0

F, Hu + v 4 &%)

The main part of the numerical calculation in this scheme
is based on the evaluation of the moments of the
Maxwellian. This looks complicated, but owing to the
simple recursion relations connecting different moments,
the programming is not hard.

The past several years have seen many multidimensional
schemes for the Euler equations with improved shock-

capturing properties (van Leer [ 311, Catalano et al. [71]);
these can be divided into two general classes: one is based
on the application of the rotated 1D Riemann solver, and
the other is a genuinely multidimensional attack on the
equations by separafing them into an equivalent set of
scalar wave equations with solution-dependent propagation
directions. In our scheme, instead of using a set of scalar
waves, we have used all particle trajectories. As can be seen
from Eq. {2.14b), each particle has a certain characteristic
trajectory. The particle can move in any direction in the
two-dimensional space with velocity (u,v), and these
directions are not restricted to the mesh directions. This
property separates this scheme from simple directional
splitting codes, and this difference is clearly demonstrated in
the shock reflection test case in the following section,

IIl. NUMERICAL NAVIER-STOKES AND
EULER SOLUTIONS

From gas-kinetic theory, the physical collision time is
given by t = /5, where /[ is the mean free path, which can be
written as a function of local number density # and the
molecular cross section « as { o 1/ng, and the mean gas
velocity 7 is proportional to the square-root of the gas
temperature. Hence, the collision time can be written as

¢

FE00,0,0)

(3.1)

where both the temperature parameter 4 (4 = 1/kT, where k
is the Boltzmann constant and T is the temperature) and the
density p(0,0,0) are chosen to correspond to the
interpolated quantities for g(0, 0, 0). All proportionality
constants are included in the parameter €.

From kinetic theory, the relation between the collision
time and dynamical viscosity is

n=1p, (3:2)

where p is gas pressure. The kinematic viscosity v is defined
as v =1n/p. The dimensionless Reynolds number Re is given
by Re = UL/v, where U and L are characteristic velocity and
length scales. For numerical purposes, we can find the
parameter €, in terms of other known quantities,

o-()E0)
i Re \/F_ P ’

where the velocity U can also be expressed as a function of
the Mach number .# and the sound speed c. .

In order to validate the applicability of this gas kinetic
scheme as a Navier-Stokes solver, in the following we give

(3.3)
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two weli-defined Navier—Stokes test cases using y= 1.4 in
both cases:

(1} The Kolmogorov test case is taken from a paper
about a lattice gas method by P. Kornreich and J. Scalo
[18]. We use this one-dimensional shear flow example to
illustrate the viscosity effects in our numerical scheme.
Initially the %-component of velocity is u, = u sin(2ny/ %)
with 1y = 0.5 and the j-component is u, = 0. Our simulation
uses a 64 x 64 grid with initial homogeneous mass density
p=10 and thermal energy density &, =0.67, where the
wavelength % is 64 and the periodic boundary conditions
are assurned in both directions. Since no perturbations are
included in the initia) data, the velocity profile keeps the
same shape with decreasing %-velocity amplitude as the
solution evolved. In order to study viscosity effects quan-
titatively we have compared the kinetic energy decay rate
obtained from the solution of the exact Navier-Stokes equa-
tions with the results from ocur numerical simulation. Since
the initial kinetic energy density g, = 0.125 is much less than
the thermal energy ¢, =067, we can regard pressure,
density, and temperature as nearly constant and ignore the
variation of the dynamic viscosity % in space and time. By
solving the Navier-Stokes equations, we obtain

o3 v}

where ¢ is the time. Using E(7)/E(0} = e ~"™’ to replace the
above equation, we find the viscosity coefficient for the exact
solution to be

2 _ ex

(3.4)

2m\?
Vs =61 ('_@‘) v 2p/p’.

We have run this case by using our code up to time ¢ = 1000
for six different values of the parameter %,. By fitting our
numerical results at r= 1000 to E(¢)/E(0)=e "', we can
obtain the corresponding experimental coefficient v,
Table I shows the comparison between the theoretical
values and the experimental ones for different %;. From
Tablel it is clear that this code gives a numerical

(3.5)

TABLE I

Quantitative Viscous Effects

C, coefficients Vus Vexp
om 70563 x10°3 6.984 x 107
0.03 21169 x 107° 1.982x 104
0.05 3528 x 104 3134 x10-*
0.07 4939x 107 4162 x 104
0.10 70563 % 107* 5781 x 10—*
0.20 1411 x10-3 £.501 x 10—*

_Tl]ll‘fl]ll]]l'_rl_l_l_'_l-l

i ]
5.4r 7]
5 1 ;
gs2p .
.
S 1
g L ]
3 ]
48T ]

TP T PSR L

0 200 400 600 800 1000

FIG. 2.

Kolmogorov test case; In{E(¢)/ E(0)) is plotted as a function of
time. '

Navier—-Stokes solution in this case and the difference
between the numerical and exact solutions becomes smaller
for smaller collision time t. The difference between them
becomes obvious with increasing 4, . The reason for this dif-
ference is that, in this problem, the CFL time step is about
T'~0.60, and the collision time is t=1.366%,. As %
increases, the collision time becomes closer to the time step,
and we approach the situation where the problem should be
treated by rarefied gas dynamics. Actually, this is beyond
the present scope of our code. In order to confirm the
exponential kinetic energy decay effect, we also give a plot
of In(E(#)/E(0)) as a function of time in Fig. 2; the slope of
the line gives the exponential decay rate.

{2) The laminar boundary layer problem with a leading
edge is taken from a paper by Alimaras [2]. The flowfield
evolves above a flat plate (located along the x-direction} at
zero incidence. The free stream Mach number is M, =03

0.03 [ e S =TT 7T

0.02

0.0

b= -A -1
L » ___1/r-‘" ]

Pt 1 1

00 gz 04

1 1 L 1 1
06 08 1
FIG. 3. Boundary layer simulation with eight cells {x) and 16 cells
(O) in the direction petpendicular to the flat plate.
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FIG. 4. Mach 3 flow in a wind tunnel with a step; 30 density contours are plotted on a 120 x 40 grid.

and the Reynolds number is Re = 500,000 per unit length.
From the value of M ., and for initial mass and momentum
densities p= 1.0, P, = 1.0, P, =0.0, we can find the initial
internal energy. Together with the kinetic energy, the total
energy density is &, = 20.34126984. At the same time, from
the Reynolds number Re and Eq (3.3), we find the
parameter €,, which is %, = 1.0030 x 10~°. The computa-
tional domain is a rectangle extending 0.54 units upstream
of the leading edge and 1.50 units downstream. The upper
boundary is located 0.03 units above the flat plate. The grids
are parabolically stretched away from the leading edge in
the x-direction, symmetrically upstream and downstream of
the leading edge. The grids are also stretched parabolically
away from the lower boundary in the upward y-direction.
Two computational domains of 32 x 16 and 16 x 8 are used
in this boundary layer problem. No-slip boundary condi-
tions are imposed on the flat plate, compatible with the
Navier-Stokes equation. On the top and left boundaries ali
quantities retain the initial input flow conditions, and on the
right boundary the frec flow condition is applied. In this
simulation, because of the non-uniformity of the grid sizes,
we have used simpler initial interpolations for the mass,
momentum, and energy at the beginning of each time step.
For all quantities, we assign the cell average values to the

volume center and use linear interpolation along the line
connecting the volume centers. The time step is determined
by the CFL condition and the output time in Fig. 3 is the
time needed for the gas moving at the free stream velocity to
get from the left end of the flat plate to the right end. The
output at the mid-point of the plate for the £ directional
velocity distribution on the line perpendicular to the flat
plate is shown in Fig. 3, where the curve from 32x 16
meshes is almost identical to the converged Navier—Stokes
solutions in Alilmaras’s paper.

From above test cases, we see that the true real viscosity
effects are captured by our numerical scheme. In the laminar
boundary layer problem, since the grid size is smaller than
the boundary layer structure, there is no need to add addi-
tional artificial viscosity to stabilize our scheme. To test this
assertion, we increased the cell size next to the flat plate to
a vatue larger than the boundary layer thickness, and we
find that oscillations emerge near the boundary. In order to
reduce these oscillations, a larger coilision time is needed,
which is equivalent to adding additional viscosity (cf.
Eq. (3.2)) to widen the numerical boundary layer thickness
to a scale larger than one or two grid sizes. Physically, this
is the same mechanism as suppressing the postshock oscilla-
tions by increasing the dissipation.

FIG. 5. Double Mach reflection test case with 30 density contours on the domain 180 x 60.
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FIG. 6. Steady state solution of the regular shock reflection. Thirty
equally distributed densily contours are shown in (a), and the pressure
profile along the line v =0.523 is plotted in (b).

We can use the same expression for the collision time in
the case of strong shocks,

1=, I;Tdf\/ﬁ;:'ﬁ_) +%, /%
/21'(0,0,0)— /010, 0, 0)
V61010, 0,0)+ \/15/0"(0, 0, 0
y Ip:“p:i’
P+ p

(3.6)

where the pressures p’ and p” and the temperatures A'and A"
terms are obtained from g’(0,0,0) and g'(0,0,0). The
second term in the above equation can be understood from
the requirement that the discontinuity thickness should be
comparable with the grid size. Another explanation for the
second term can be this: in the discontinuity region, owing
to the steep slopes for the mass, momentum, and energy
_interpolations, negative density or temperatures can easily
occur in the region close to the cell boundary, which would
create pseudo-particles to deteriorate the numerical fluxes
i our scheme. The second term just reduces these effects
exponentially. In a smooth region, the second term is always
small.

We know that the Navier-Stokes equations approach the
Euler equations when the real viscosity becomes very small.
In the following we gave the results of three well-defined
Euler test cases, where %, =0.01 and %, =1.0 are used in
Eq. {3.6) in all instances.

(3) The third test is the same Emery test as discussed in
paper I with a computational domain 120 x 40. Figure 4
shows the result from our current 2D code: the second
Mach stem is shorter than the one from the splitting scheme
in paper L. No special treatment of the cells near the step
corner was employed in this calculation.

(4) The fourth test is the case of double Mach reflection
of a strong shock, taken from a paper by Woodward and
Colalla [32]. The computational domain is 240 x 60, but
here we plot 30 contours in the region of 180 x 60. As can be
seen in Fig. 5, we obtain very sharp shock fronts.

(5) The last test case is regular shock reflection. The
computational domain is a rectangle of length 4 and height
! divided into a 60 x 20 rectangular grids with Ax= %,
Ay = 5. Dirichlet conditions '

(p,u, v, pllio.,.n=1010,29,00,1/14),
(P v P 1= (1.69997, 2.61934, —0.50633, 1.52819).

are imposed on the left and upper boundaries, respectively.
The bottom boundary is a reflecting wall and the supersonic
outflow condition is applied along the right boundary.
Initially, the solution in the entire domain is set to be that
at the left boundary [11]. We iterate for 500 time steps, at
which time the solution reaches a steady state. Figure 6
shows the result from this 2D code.

IV. CONCLUSION

In this paper we have extended the gas kinetic based
hydrodynamic scheme in paper I to two dimensions. This
scheme solves the hydrodynamic equations numerically by
following the integral solution of the BGK model. As
pointed out in paper I, there are some advantages to the gas
kinetic approach to numerical hydrodynamics. In [33],
more detailed analysis of our schemes are given.

Linear interpolations for all conserved quantities are used
in all test cases, and the simulation results have high resolu-
tion. The reason is that the time evolution of the distribu-
tion functions are followed explicitly from the initial linear
interpolation. Here second-order resolution in both space
and time are achieved without using intermediate stages.
Also, the implicit way we obtained the term 4 in Eq. (2.7)
allows this Navier-Stokes scheme to use a CFL timestep
dt=G(dx).

We include both 2/dx and 8/2y at the same time, which is
an advance on the directional splitting scheme (paper I),
where just one of them is included. Even in the direction
splitting version of our scheme, which deletes J/dy when
calculating * directional fluxes, the #-momentum transfer
can still be counted and solved explicitly in the %-direction.
This is different from most Godunov schemes, where one-
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dimensional Riemann solvers are used for two-dimensional
simulations. Sometimes, the inclusion of j-momentum is
crucial for one-dimensional shear flows, such as for the
calculation of the Rayleigh problem (Chu [10]) of viscous
flow adjacent to an impulsively started moving wall.

Since all trajectories {characteristics) of individual par-
ticles are followed, it is possible to make this scheme more
multidimensional by careful interpolation of the initial
quantities. This property is different from other multidimen-
sional schemes starting from the Euler or Navier-Stokes
equations directly, where local decompositions into a finite
number of traveling waves are used (Rumsey ef al. [26]).

It would not be hard to include second- and third-order
Taylor expansions for g and f, carrying 6°/6x dy, 8%/éx ét,
eic. and evaluating their coefficients explicitly, using
derivatives of the conservation consiraints. However, ihis
would make the code not only more sensitive to the precise
form of the initial interpolation, but it would also greatly
increase the computational time. For turbulence flow
simulations, including high-order terms may be worthwhile,
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